3.3.92 \(\int \frac {\cos ^3(x) \sin ^3(x)}{(a \cos (x)+b \sin (x))^2} \, dx\) [292]

Optimal. Leaf size=210 \[ -\frac {3 a b \left (a^4-6 a^2 b^2+b^4\right ) x}{4 \left (a^2+b^2\right )^4}-\frac {b^2 \cos ^4(x)}{4 \left (a^2+b^2\right )^2}-\frac {3 a^2 b^2 \left (a^2-b^2\right ) \log (a \cos (x)+b \sin (x))}{\left (a^2+b^2\right )^4}+\frac {a b \left (5 a^2-3 b^2\right ) \cos (x) \sin (x)}{4 \left (a^2+b^2\right )^3}-\frac {a b \cos ^3(x) \sin (x)}{2 \left (a^2+b^2\right )^2}-\frac {2 a^2 b^2 \sin ^2(x)}{\left (a^2+b^2\right )^3}+\frac {a^2 \sin ^4(x)}{4 \left (a^2+b^2\right )^2}-\frac {a^2 b^3 \sin (x)}{\left (a^2+b^2\right )^3 (a \cos (x)+b \sin (x))} \]

[Out]

-3/4*a*b*(a^4-6*a^2*b^2+b^4)*x/(a^2+b^2)^4-1/4*b^2*cos(x)^4/(a^2+b^2)^2-3*a^2*b^2*(a^2-b^2)*ln(a*cos(x)+b*sin(
x))/(a^2+b^2)^4+1/4*a*b*(5*a^2-3*b^2)*cos(x)*sin(x)/(a^2+b^2)^3-1/2*a*b*cos(x)^3*sin(x)/(a^2+b^2)^2-2*a^2*b^2*
sin(x)^2/(a^2+b^2)^3+1/4*a^2*sin(x)^4/(a^2+b^2)^2-a^2*b^3*sin(x)/(a^2+b^2)^3/(a*cos(x)+b*sin(x))

________________________________________________________________________________________

Rubi [A]
time = 0.86, antiderivative size = 289, normalized size of antiderivative = 1.38, number of steps used = 48, number of rules used = 12, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3190, 3188, 2645, 30, 2648, 2715, 8, 2644, 3177, 3212, 3176, 3154} \begin {gather*} \frac {a b x}{4 \left (a^2+b^2\right )^2}+\frac {a^2 \sin ^4(x)}{4 \left (a^2+b^2\right )^2}-\frac {2 a^2 b^2 \sin ^2(x)}{\left (a^2+b^2\right )^3}-\frac {b^2 \cos ^4(x)}{4 \left (a^2+b^2\right )^2}-\frac {a b \sin (x) \cos ^3(x)}{2 \left (a^2+b^2\right )^2}+\frac {a b \sin (x) \cos (x)}{4 \left (a^2+b^2\right )^2}+\frac {3 a^2 b^4 \log (a \cos (x)+b \sin (x))}{\left (a^2+b^2\right )^4}-\frac {a b^3 x}{\left (a^2+b^2\right )^3}-\frac {a^2 b^3 \sin (x)}{\left (a^2+b^2\right )^3 (a \cos (x)+b \sin (x))}-\frac {a b^3 \sin (x) \cos (x)}{\left (a^2+b^2\right )^3}-\frac {3 a^4 b^2 \log (a \cos (x)+b \sin (x))}{\left (a^2+b^2\right )^4}-\frac {a^3 b x}{\left (a^2+b^2\right )^3}+\frac {a^3 b \sin (x) \cos (x)}{\left (a^2+b^2\right )^3}+\frac {6 a^3 b^3 x}{\left (a^2+b^2\right )^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Cos[x]^3*Sin[x]^3)/(a*Cos[x] + b*Sin[x])^2,x]

[Out]

(6*a^3*b^3*x)/(a^2 + b^2)^4 - (a^3*b*x)/(a^2 + b^2)^3 - (a*b^3*x)/(a^2 + b^2)^3 + (a*b*x)/(4*(a^2 + b^2)^2) -
(b^2*Cos[x]^4)/(4*(a^2 + b^2)^2) - (3*a^4*b^2*Log[a*Cos[x] + b*Sin[x]])/(a^2 + b^2)^4 + (3*a^2*b^4*Log[a*Cos[x
] + b*Sin[x]])/(a^2 + b^2)^4 + (a^3*b*Cos[x]*Sin[x])/(a^2 + b^2)^3 - (a*b^3*Cos[x]*Sin[x])/(a^2 + b^2)^3 + (a*
b*Cos[x]*Sin[x])/(4*(a^2 + b^2)^2) - (a*b*Cos[x]^3*Sin[x])/(2*(a^2 + b^2)^2) - (2*a^2*b^2*Sin[x]^2)/(a^2 + b^2
)^3 + (a^2*Sin[x]^4)/(4*(a^2 + b^2)^2) - (a^2*b^3*Sin[x])/((a^2 + b^2)^3*(a*Cos[x] + b*Sin[x]))

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2644

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2645

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[-(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 2648

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-a)*(b*Cos[e
 + f*x])^(n + 1)*((a*Sin[e + f*x])^(m - 1)/(b*f*(m + n))), x] + Dist[a^2*((m - 1)/(m + n)), Int[(b*Cos[e + f*x
])^n*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m + n, 0] && IntegersQ[
2*m, 2*n]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 3154

Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-2), x_Symbol] :> Simp[Sin[c + d*x]/(a*d*
(a*Cos[c + d*x] + b*Sin[c + d*x])), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0]

Rule 3176

Int[sin[(c_.) + (d_.)*(x_)]/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp
[b*(x/(a^2 + b^2)), x] - Dist[a/(a^2 + b^2), Int[(b*Cos[c + d*x] - a*Sin[c + d*x])/(a*Cos[c + d*x] + b*Sin[c +
 d*x]), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0]

Rule 3177

Int[cos[(c_.) + (d_.)*(x_)]/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp
[a*(x/(a^2 + b^2)), x] + Dist[b/(a^2 + b^2), Int[(b*Cos[c + d*x] - a*Sin[c + d*x])/(a*Cos[c + d*x] + b*Sin[c +
 d*x]), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0]

Rule 3188

Int[(cos[(c_.) + (d_.)*(x_)]^(m_.)*sin[(c_.) + (d_.)*(x_)]^(n_.))/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(
c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[b/(a^2 + b^2), Int[Cos[c + d*x]^m*Sin[c + d*x]^(n - 1), x], x] + (Dist[
a/(a^2 + b^2), Int[Cos[c + d*x]^(m - 1)*Sin[c + d*x]^n, x], x] - Dist[a*(b/(a^2 + b^2)), Int[Cos[c + d*x]^(m -
 1)*(Sin[c + d*x]^(n - 1)/(a*Cos[c + d*x] + b*Sin[c + d*x])), x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b
^2, 0] && IGtQ[m, 0] && IGtQ[n, 0]

Rule 3190

Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*sin[(c_.) + (d_.)*(x_)]^(n_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_
.) + (d_.)*(x_)])^(p_), x_Symbol] :> Dist[b/(a^2 + b^2), Int[Cos[c + d*x]^m*Sin[c + d*x]^(n - 1)*(a*Cos[c + d*
x] + b*Sin[c + d*x])^(p + 1), x], x] + (Dist[a/(a^2 + b^2), Int[Cos[c + d*x]^(m - 1)*Sin[c + d*x]^n*(a*Cos[c +
 d*x] + b*Sin[c + d*x])^(p + 1), x], x] - Dist[a*(b/(a^2 + b^2)), Int[Cos[c + d*x]^(m - 1)*Sin[c + d*x]^(n - 1
)*(a*Cos[c + d*x] + b*Sin[c + d*x])^p, x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && IGtQ[m, 0] &&
 IGtQ[n, 0] && ILtQ[p, 0]

Rule 3212

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(
b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[(b*B + c*C)*(x/(b^2 + c^2)), x] + Simp[(c*B - b*C)*(L
og[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/(e*(b^2 + c^2))), x] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ[b^2
+ c^2, 0] && EqQ[A*(b^2 + c^2) - a*(b*B + c*C), 0]

Rubi steps

\begin {align*} \int \frac {\cos ^3(x) \sin ^3(x)}{(a \cos (x)+b \sin (x))^2} \, dx &=\frac {a \int \frac {\cos ^2(x) \sin ^3(x)}{a \cos (x)+b \sin (x)} \, dx}{a^2+b^2}+\frac {b \int \frac {\cos ^3(x) \sin ^2(x)}{a \cos (x)+b \sin (x)} \, dx}{a^2+b^2}-\frac {(a b) \int \frac {\cos ^2(x) \sin ^2(x)}{(a \cos (x)+b \sin (x))^2} \, dx}{a^2+b^2}\\ &=\frac {a^2 \int \cos (x) \sin ^3(x) \, dx}{\left (a^2+b^2\right )^2}+2 \frac {(a b) \int \cos ^2(x) \sin ^2(x) \, dx}{\left (a^2+b^2\right )^2}-2 \frac {\left (a^2 b\right ) \int \frac {\cos (x) \sin ^2(x)}{a \cos (x)+b \sin (x)} \, dx}{\left (a^2+b^2\right )^2}+\frac {b^2 \int \cos ^3(x) \sin (x) \, dx}{\left (a^2+b^2\right )^2}-2 \frac {\left (a b^2\right ) \int \frac {\cos ^2(x) \sin (x)}{a \cos (x)+b \sin (x)} \, dx}{\left (a^2+b^2\right )^2}+\frac {\left (a^2 b^2\right ) \int \frac {\cos (x) \sin (x)}{(a \cos (x)+b \sin (x))^2} \, dx}{\left (a^2+b^2\right )^2}\\ &=-2 \left (\frac {\left (a^3 b\right ) \int \sin ^2(x) \, dx}{\left (a^2+b^2\right )^3}+\frac {\left (a^2 b^2\right ) \int \cos (x) \sin (x) \, dx}{\left (a^2+b^2\right )^3}-\frac {\left (a^3 b^2\right ) \int \frac {\sin (x)}{a \cos (x)+b \sin (x)} \, dx}{\left (a^2+b^2\right )^3}\right )+\frac {\left (a^3 b^2\right ) \int \frac {\sin (x)}{a \cos (x)+b \sin (x)} \, dx}{\left (a^2+b^2\right )^3}-2 \left (\frac {\left (a^2 b^2\right ) \int \cos (x) \sin (x) \, dx}{\left (a^2+b^2\right )^3}+\frac {\left (a b^3\right ) \int \cos ^2(x) \, dx}{\left (a^2+b^2\right )^3}-\frac {\left (a^2 b^3\right ) \int \frac {\cos (x)}{a \cos (x)+b \sin (x)} \, dx}{\left (a^2+b^2\right )^3}\right )+\frac {\left (a^2 b^3\right ) \int \frac {\cos (x)}{a \cos (x)+b \sin (x)} \, dx}{\left (a^2+b^2\right )^3}-\frac {\left (a^3 b^3\right ) \int \frac {1}{(a \cos (x)+b \sin (x))^2} \, dx}{\left (a^2+b^2\right )^3}+\frac {a^2 \text {Subst}\left (\int x^3 \, dx,x,\sin (x)\right )}{\left (a^2+b^2\right )^2}+2 \left (-\frac {a b \cos ^3(x) \sin (x)}{4 \left (a^2+b^2\right )^2}+\frac {(a b) \int \cos ^2(x) \, dx}{4 \left (a^2+b^2\right )^2}\right )-\frac {b^2 \text {Subst}\left (\int x^3 \, dx,x,\cos (x)\right )}{\left (a^2+b^2\right )^2}\\ &=\frac {2 a^3 b^3 x}{\left (a^2+b^2\right )^4}-\frac {b^2 \cos ^4(x)}{4 \left (a^2+b^2\right )^2}+\frac {a^2 \sin ^4(x)}{4 \left (a^2+b^2\right )^2}-\frac {a^2 b^3 \sin (x)}{\left (a^2+b^2\right )^3 (a \cos (x)+b \sin (x))}-\frac {\left (a^4 b^2\right ) \int \frac {b \cos (x)-a \sin (x)}{a \cos (x)+b \sin (x)} \, dx}{\left (a^2+b^2\right )^4}+\frac {\left (a^2 b^4\right ) \int \frac {b \cos (x)-a \sin (x)}{a \cos (x)+b \sin (x)} \, dx}{\left (a^2+b^2\right )^4}-2 \left (-\frac {a^3 b^3 x}{\left (a^2+b^2\right )^4}-\frac {a^3 b \cos (x) \sin (x)}{2 \left (a^2+b^2\right )^3}+\frac {\left (a^4 b^2\right ) \int \frac {b \cos (x)-a \sin (x)}{a \cos (x)+b \sin (x)} \, dx}{\left (a^2+b^2\right )^4}+\frac {\left (a^3 b\right ) \int 1 \, dx}{2 \left (a^2+b^2\right )^3}+\frac {\left (a^2 b^2\right ) \text {Subst}(\int x \, dx,x,\sin (x))}{\left (a^2+b^2\right )^3}\right )-2 \left (-\frac {a^3 b^3 x}{\left (a^2+b^2\right )^4}+\frac {a b^3 \cos (x) \sin (x)}{2 \left (a^2+b^2\right )^3}-\frac {\left (a^2 b^4\right ) \int \frac {b \cos (x)-a \sin (x)}{a \cos (x)+b \sin (x)} \, dx}{\left (a^2+b^2\right )^4}+\frac {\left (a^2 b^2\right ) \text {Subst}(\int x \, dx,x,\sin (x))}{\left (a^2+b^2\right )^3}+\frac {\left (a b^3\right ) \int 1 \, dx}{2 \left (a^2+b^2\right )^3}\right )+2 \left (\frac {a b \cos (x) \sin (x)}{8 \left (a^2+b^2\right )^2}-\frac {a b \cos ^3(x) \sin (x)}{4 \left (a^2+b^2\right )^2}+\frac {(a b) \int 1 \, dx}{8 \left (a^2+b^2\right )^2}\right )\\ &=\frac {2 a^3 b^3 x}{\left (a^2+b^2\right )^4}-\frac {b^2 \cos ^4(x)}{4 \left (a^2+b^2\right )^2}-\frac {a^4 b^2 \log (a \cos (x)+b \sin (x))}{\left (a^2+b^2\right )^4}+\frac {a^2 b^4 \log (a \cos (x)+b \sin (x))}{\left (a^2+b^2\right )^4}+\frac {a^2 \sin ^4(x)}{4 \left (a^2+b^2\right )^2}-\frac {a^2 b^3 \sin (x)}{\left (a^2+b^2\right )^3 (a \cos (x)+b \sin (x))}+2 \left (\frac {a b x}{8 \left (a^2+b^2\right )^2}+\frac {a b \cos (x) \sin (x)}{8 \left (a^2+b^2\right )^2}-\frac {a b \cos ^3(x) \sin (x)}{4 \left (a^2+b^2\right )^2}\right )-2 \left (-\frac {a^3 b^3 x}{\left (a^2+b^2\right )^4}+\frac {a^3 b x}{2 \left (a^2+b^2\right )^3}+\frac {a^4 b^2 \log (a \cos (x)+b \sin (x))}{\left (a^2+b^2\right )^4}-\frac {a^3 b \cos (x) \sin (x)}{2 \left (a^2+b^2\right )^3}+\frac {a^2 b^2 \sin ^2(x)}{2 \left (a^2+b^2\right )^3}\right )-2 \left (-\frac {a^3 b^3 x}{\left (a^2+b^2\right )^4}+\frac {a b^3 x}{2 \left (a^2+b^2\right )^3}-\frac {a^2 b^4 \log (a \cos (x)+b \sin (x))}{\left (a^2+b^2\right )^4}+\frac {a b^3 \cos (x) \sin (x)}{2 \left (a^2+b^2\right )^3}+\frac {a^2 b^2 \sin ^2(x)}{2 \left (a^2+b^2\right )^3}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 3.02, size = 409, normalized size = 1.95 \begin {gather*} \frac {-12 a b \left (a^2-3 b^2\right ) \left (3 a^2-b^2\right ) x+6 i \left (a^6-15 a^4 b^2+15 a^2 b^4-b^6\right ) x-6 i \left (a^6-15 a^4 b^2+15 a^2 b^4-b^6\right ) \text {ArcTan}(\tan (x))-4 \left (a^2+b^2\right ) \left (a^4-6 a^2 b^2+b^4\right ) \cos (2 x)+\left (a^2-b^2\right ) \left (a^2+b^2\right )^2 \cos (4 x)+3 \left (a^6-15 a^4 b^2+15 a^2 b^4-b^6\right ) \log \left ((a \cos (x)+b \sin (x))^2\right )+\frac {2 b \left (a^2+b^2\right ) \left (3 a^4-10 a^2 b^2+3 b^4\right ) \sin (x)}{a \cos (x)+b \sin (x)}+\frac {3 \left (a^2+b^2\right )^2 \left (a \cos (x) \left (-2 i (a+i b)^2 x+\left (-a^2+b^2\right ) \log \left ((a \cos (x)+b \sin (x))^2\right )\right )+b \left (2 (a+i b) (a (-1-i x)+b (i+x))+\left (-a^2+b^2\right ) \log \left ((a \cos (x)+b \sin (x))^2\right )\right ) \sin (x)+2 i \left (a^2-b^2\right ) \text {ArcTan}(\tan (x)) (a \cos (x)+b \sin (x))\right )}{a \cos (x)+b \sin (x)}+16 a b \left (a^4-b^4\right ) \sin (2 x)-2 a b \left (a^2+b^2\right )^2 \sin (4 x)}{32 \left (a^2+b^2\right )^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Cos[x]^3*Sin[x]^3)/(a*Cos[x] + b*Sin[x])^2,x]

[Out]

(-12*a*b*(a^2 - 3*b^2)*(3*a^2 - b^2)*x + (6*I)*(a^6 - 15*a^4*b^2 + 15*a^2*b^4 - b^6)*x - (6*I)*(a^6 - 15*a^4*b
^2 + 15*a^2*b^4 - b^6)*ArcTan[Tan[x]] - 4*(a^2 + b^2)*(a^4 - 6*a^2*b^2 + b^4)*Cos[2*x] + (a^2 - b^2)*(a^2 + b^
2)^2*Cos[4*x] + 3*(a^6 - 15*a^4*b^2 + 15*a^2*b^4 - b^6)*Log[(a*Cos[x] + b*Sin[x])^2] + (2*b*(a^2 + b^2)*(3*a^4
 - 10*a^2*b^2 + 3*b^4)*Sin[x])/(a*Cos[x] + b*Sin[x]) + (3*(a^2 + b^2)^2*(a*Cos[x]*((-2*I)*(a + I*b)^2*x + (-a^
2 + b^2)*Log[(a*Cos[x] + b*Sin[x])^2]) + b*(2*(a + I*b)*(a*(-1 - I*x) + b*(I + x)) + (-a^2 + b^2)*Log[(a*Cos[x
] + b*Sin[x])^2])*Sin[x] + (2*I)*(a^2 - b^2)*ArcTan[Tan[x]]*(a*Cos[x] + b*Sin[x])))/(a*Cos[x] + b*Sin[x]) + 16
*a*b*(a^4 - b^4)*Sin[2*x] - 2*a*b*(a^2 + b^2)^2*Sin[4*x])/(32*(a^2 + b^2)^4)

________________________________________________________________________________________

Maple [A]
time = 0.54, size = 232, normalized size = 1.10

method result size
default \(\frac {a^{3} b^{2}}{\left (a^{2}+b^{2}\right )^{3} \left (a +b \tan \left (x \right )\right )}-\frac {3 a^{2} b^{2} \left (a^{2}-b^{2}\right ) \ln \left (a +b \tan \left (x \right )\right )}{\left (a^{2}+b^{2}\right )^{4}}+\frac {\frac {\left (\frac {1}{2} a^{3} b^{3}-\frac {3}{4} a \,b^{5}+\frac {5}{4} a^{5} b \right ) \left (\tan ^{3}\left (x \right )\right )+\left (-\frac {1}{2} a^{6}+a^{4} b^{2}+\frac {3}{2} a^{2} b^{4}\right ) \left (\tan ^{2}\left (x \right )\right )+\left (\frac {3}{4} a^{5} b -\frac {1}{2} a^{3} b^{3}-\frac {5}{4} a \,b^{5}\right ) \tan \left (x \right )-\frac {a^{6}}{4}+\frac {5 a^{4} b^{2}}{4}+\frac {5 a^{2} b^{4}}{4}-\frac {b^{6}}{4}}{\left (\tan ^{2}\left (x \right )+1\right )^{2}}+\frac {3 a b \left (\frac {\left (4 a^{3} b -4 a \,b^{3}\right ) \ln \left (\tan ^{2}\left (x \right )+1\right )}{2}+\left (-a^{4}+6 a^{2} b^{2}-b^{4}\right ) \arctan \left (\tan \left (x \right )\right )\right )}{4}}{\left (a^{2}+b^{2}\right )^{4}}\) \(232\)
risch \(\frac {3 a b x}{4 \left (4 i a^{3} b -4 i a \,b^{3}-a^{4}+6 a^{2} b^{2}-b^{4}\right )}+\frac {{\mathrm e}^{4 i x}}{-128 i a b +64 a^{2}-64 b^{2}}-\frac {i {\mathrm e}^{2 i x} b}{16 \left (-3 i a^{2} b +i b^{3}+a^{3}-3 a \,b^{2}\right )}-\frac {{\mathrm e}^{2 i x} a}{16 \left (-3 i a^{2} b +i b^{3}+a^{3}-3 a \,b^{2}\right )}+\frac {i {\mathrm e}^{-2 i x} b}{16 \left (2 i a b +a^{2}-b^{2}\right ) \left (i b +a \right )}-\frac {{\mathrm e}^{-2 i x} a}{16 \left (2 i a b +a^{2}-b^{2}\right ) \left (i b +a \right )}+\frac {{\mathrm e}^{-4 i x}}{128 i a b +64 a^{2}-64 b^{2}}+\frac {6 i a^{4} b^{2} x}{a^{8}+4 b^{2} a^{6}+6 a^{4} b^{4}+4 a^{2} b^{6}+b^{8}}-\frac {6 i a^{2} b^{4} x}{a^{8}+4 b^{2} a^{6}+6 a^{4} b^{4}+4 a^{2} b^{6}+b^{8}}-\frac {2 i a^{3} b^{3}}{\left (i b +a \right )^{3} \left (-i b +a \right )^{4} \left (-i b \,{\mathrm e}^{2 i x}+a \,{\mathrm e}^{2 i x}+i b +a \right )}-\frac {3 a^{4} b^{2} \ln \left ({\mathrm e}^{2 i x}-\frac {i b +a}{i b -a}\right )}{a^{8}+4 b^{2} a^{6}+6 a^{4} b^{4}+4 a^{2} b^{6}+b^{8}}+\frac {3 a^{2} b^{4} \ln \left ({\mathrm e}^{2 i x}-\frac {i b +a}{i b -a}\right )}{a^{8}+4 b^{2} a^{6}+6 a^{4} b^{4}+4 a^{2} b^{6}+b^{8}}\) \(487\)
norman \(\text {Expression too large to display}\) \(1658\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(x)^3*sin(x)^3/(a*cos(x)+b*sin(x))^2,x,method=_RETURNVERBOSE)

[Out]

a^3*b^2/(a^2+b^2)^3/(a+b*tan(x))-3*a^2*b^2*(a^2-b^2)/(a^2+b^2)^4*ln(a+b*tan(x))+1/(a^2+b^2)^4*(((1/2*a^3*b^3-3
/4*a*b^5+5/4*a^5*b)*tan(x)^3+(-1/2*a^6+a^4*b^2+3/2*a^2*b^4)*tan(x)^2+(3/4*a^5*b-1/2*a^3*b^3-5/4*a*b^5)*tan(x)-
1/4*a^6+5/4*a^4*b^2+5/4*a^2*b^4-1/4*b^6)/(tan(x)^2+1)^2+3/4*a*b*(1/2*(4*a^3*b-4*a*b^3)*ln(tan(x)^2+1)+(-a^4+6*
a^2*b^2-b^4)*arctan(tan(x))))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 456 vs. \(2 (200) = 400\).
time = 0.49, size = 456, normalized size = 2.17 \begin {gather*} -\frac {3 \, {\left (a^{5} b - 6 \, a^{3} b^{3} + a b^{5}\right )} x}{4 \, {\left (a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}\right )}} - \frac {3 \, {\left (a^{4} b^{2} - a^{2} b^{4}\right )} \log \left (b \tan \left (x\right ) + a\right )}{a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}} + \frac {3 \, {\left (a^{4} b^{2} - a^{2} b^{4}\right )} \log \left (\tan \left (x\right )^{2} + 1\right )}{2 \, {\left (a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}\right )}} - \frac {a^{5} - 10 \, a^{3} b^{2} + a b^{4} - 3 \, {\left (3 \, a^{3} b^{2} - a b^{4}\right )} \tan \left (x\right )^{4} - 3 \, {\left (a^{4} b + a^{2} b^{3}\right )} \tan \left (x\right )^{3} + {\left (2 \, a^{5} - 17 \, a^{3} b^{2} + 5 \, a b^{4}\right )} \tan \left (x\right )^{2} - {\left (2 \, a^{4} b + a^{2} b^{3} - b^{5}\right )} \tan \left (x\right )}{4 \, {\left (a^{7} + 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} + a b^{6} + {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} \tan \left (x\right )^{5} + {\left (a^{7} + 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} + a b^{6}\right )} \tan \left (x\right )^{4} + 2 \, {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} \tan \left (x\right )^{3} + 2 \, {\left (a^{7} + 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} + a b^{6}\right )} \tan \left (x\right )^{2} + {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} \tan \left (x\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^3*sin(x)^3/(a*cos(x)+b*sin(x))^2,x, algorithm="maxima")

[Out]

-3/4*(a^5*b - 6*a^3*b^3 + a*b^5)*x/(a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8) - 3*(a^4*b^2 - a^2*b^4)*log
(b*tan(x) + a)/(a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8) + 3/2*(a^4*b^2 - a^2*b^4)*log(tan(x)^2 + 1)/(a^
8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8) - 1/4*(a^5 - 10*a^3*b^2 + a*b^4 - 3*(3*a^3*b^2 - a*b^4)*tan(x)^4
- 3*(a^4*b + a^2*b^3)*tan(x)^3 + (2*a^5 - 17*a^3*b^2 + 5*a*b^4)*tan(x)^2 - (2*a^4*b + a^2*b^3 - b^5)*tan(x))/(
a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6 + (a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*tan(x)^5 + (a^7 + 3*a^5*b^2 + 3*a^
3*b^4 + a*b^6)*tan(x)^4 + 2*(a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*tan(x)^3 + 2*(a^7 + 3*a^5*b^2 + 3*a^3*b^4 +
a*b^6)*tan(x)^2 + (a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*tan(x))

________________________________________________________________________________________

Fricas [A]
time = 2.69, size = 371, normalized size = 1.77 \begin {gather*} \frac {8 \, {\left (a^{7} + 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} + a b^{6}\right )} \cos \left (x\right )^{5} - 8 \, {\left (2 \, a^{7} + 3 \, a^{5} b^{2} - a b^{6}\right )} \cos \left (x\right )^{3} + {\left (5 \, a^{7} + 21 \, a^{5} b^{2} + 27 \, a^{3} b^{4} - 21 \, a b^{6} - 24 \, {\left (a^{6} b - 6 \, a^{4} b^{3} + a^{2} b^{5}\right )} x\right )} \cos \left (x\right ) - 48 \, {\left ({\left (a^{5} b^{2} - a^{3} b^{4}\right )} \cos \left (x\right ) + {\left (a^{4} b^{3} - a^{2} b^{5}\right )} \sin \left (x\right )\right )} \log \left (2 \, a b \cos \left (x\right ) \sin \left (x\right ) + {\left (a^{2} - b^{2}\right )} \cos \left (x\right )^{2} + b^{2}\right ) + {\left (5 \, a^{6} b - 51 \, a^{4} b^{3} - 21 \, a^{2} b^{5} + 3 \, b^{7} - 8 \, {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} \cos \left (x\right )^{4} + 24 \, {\left (a^{6} b + 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} \cos \left (x\right )^{2} - 24 \, {\left (a^{5} b^{2} - 6 \, a^{3} b^{4} + a b^{6}\right )} x\right )} \sin \left (x\right )}{32 \, {\left ({\left (a^{9} + 4 \, a^{7} b^{2} + 6 \, a^{5} b^{4} + 4 \, a^{3} b^{6} + a b^{8}\right )} \cos \left (x\right ) + {\left (a^{8} b + 4 \, a^{6} b^{3} + 6 \, a^{4} b^{5} + 4 \, a^{2} b^{7} + b^{9}\right )} \sin \left (x\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^3*sin(x)^3/(a*cos(x)+b*sin(x))^2,x, algorithm="fricas")

[Out]

1/32*(8*(a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*cos(x)^5 - 8*(2*a^7 + 3*a^5*b^2 - a*b^6)*cos(x)^3 + (5*a^7 + 21*
a^5*b^2 + 27*a^3*b^4 - 21*a*b^6 - 24*(a^6*b - 6*a^4*b^3 + a^2*b^5)*x)*cos(x) - 48*((a^5*b^2 - a^3*b^4)*cos(x)
+ (a^4*b^3 - a^2*b^5)*sin(x))*log(2*a*b*cos(x)*sin(x) + (a^2 - b^2)*cos(x)^2 + b^2) + (5*a^6*b - 51*a^4*b^3 -
21*a^2*b^5 + 3*b^7 - 8*(a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*cos(x)^4 + 24*(a^6*b + 2*a^4*b^3 + a^2*b^5)*cos(x
)^2 - 24*(a^5*b^2 - 6*a^3*b^4 + a*b^6)*x)*sin(x))/((a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*cos(x) +
(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*sin(x))

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)**3*sin(x)**3/(a*cos(x)+b*sin(x))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 435 vs. \(2 (200) = 400\).
time = 0.44, size = 435, normalized size = 2.07 \begin {gather*} -\frac {3 \, {\left (a^{5} b - 6 \, a^{3} b^{3} + a b^{5}\right )} x}{4 \, {\left (a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}\right )}} + \frac {3 \, {\left (a^{4} b^{2} - a^{2} b^{4}\right )} \log \left (\tan \left (x\right )^{2} + 1\right )}{2 \, {\left (a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}\right )}} - \frac {3 \, {\left (a^{4} b^{3} - a^{2} b^{5}\right )} \log \left ({\left | b \tan \left (x\right ) + a \right |}\right )}{a^{8} b + 4 \, a^{6} b^{3} + 6 \, a^{4} b^{5} + 4 \, a^{2} b^{7} + b^{9}} + \frac {3 \, a^{4} b^{3} \tan \left (x\right ) - 3 \, a^{2} b^{5} \tan \left (x\right ) + 4 \, a^{5} b^{2} - 2 \, a^{3} b^{4}}{{\left (a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}\right )} {\left (b \tan \left (x\right ) + a\right )}} - \frac {9 \, a^{4} b^{2} \tan \left (x\right )^{4} - 9 \, a^{2} b^{4} \tan \left (x\right )^{4} - 5 \, a^{5} b \tan \left (x\right )^{3} - 2 \, a^{3} b^{3} \tan \left (x\right )^{3} + 3 \, a b^{5} \tan \left (x\right )^{3} + 2 \, a^{6} \tan \left (x\right )^{2} + 14 \, a^{4} b^{2} \tan \left (x\right )^{2} - 24 \, a^{2} b^{4} \tan \left (x\right )^{2} - 3 \, a^{5} b \tan \left (x\right ) + 2 \, a^{3} b^{3} \tan \left (x\right ) + 5 \, a b^{5} \tan \left (x\right ) + a^{6} + 4 \, a^{4} b^{2} - 14 \, a^{2} b^{4} + b^{6}}{4 \, {\left (a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}\right )} {\left (\tan \left (x\right )^{2} + 1\right )}^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^3*sin(x)^3/(a*cos(x)+b*sin(x))^2,x, algorithm="giac")

[Out]

-3/4*(a^5*b - 6*a^3*b^3 + a*b^5)*x/(a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8) + 3/2*(a^4*b^2 - a^2*b^4)*l
og(tan(x)^2 + 1)/(a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8) - 3*(a^4*b^3 - a^2*b^5)*log(abs(b*tan(x) + a)
)/(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9) + (3*a^4*b^3*tan(x) - 3*a^2*b^5*tan(x) + 4*a^5*b^2 - 2*a^3
*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*(b*tan(x) + a)) - 1/4*(9*a^4*b^2*tan(x)^4 - 9*a^2*b^4*t
an(x)^4 - 5*a^5*b*tan(x)^3 - 2*a^3*b^3*tan(x)^3 + 3*a*b^5*tan(x)^3 + 2*a^6*tan(x)^2 + 14*a^4*b^2*tan(x)^2 - 24
*a^2*b^4*tan(x)^2 - 3*a^5*b*tan(x) + 2*a^3*b^3*tan(x) + 5*a*b^5*tan(x) + a^6 + 4*a^4*b^2 - 14*a^2*b^4 + b^6)/(
(a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*(tan(x)^2 + 1)^2)

________________________________________________________________________________________

Mupad [B]
time = 13.92, size = 2500, normalized size = 11.90 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(x)^3*sin(x)^3)/(a*cos(x) + b*sin(x))^2,x)

[Out]

((tan(x/2)^4*(a*b^2 + 4*a^3))/(a^4 + b^4 + 2*a^2*b^2) - (tan(x/2)^6*(a*b^2 + 4*a^3))/(a^4 + b^4 + 2*a^2*b^2) -
 (3*a*b^2*tan(x/2)^2)/(a^4 + b^4 + 2*a^2*b^2) + (3*a*b^2*tan(x/2)^8)/(a^4 + b^4 + 2*a^2*b^2) + (3*b*tan(x/2)^9
*(a^4 - 3*a^2*b^2))/(2*(a^6 + b^6 + 3*a^2*b^4 + 3*a^4*b^2)) + (3*b*tan(x/2)*(a^4 - 3*a^2*b^2))/(2*(a^2 + b^2)*
(a^4 + b^4 + 2*a^2*b^2)) + (4*b*tan(x/2)^3*(a^4 + b^4 - 4*a^2*b^2))/((a^2 + b^2)*(a^4 + b^4 + 2*a^2*b^2)) + (4
*b*tan(x/2)^7*(a^4 + b^4 - 4*a^2*b^2))/((a^2 + b^2)*(a^4 + b^4 + 2*a^2*b^2)) - (3*b*tan(x/2)^5*(a^4 + 13*a^2*b
^2))/((a^2 + b^2)*(a^4 + b^4 + 2*a^2*b^2)))/(a + 2*b*tan(x/2) + 3*a*tan(x/2)^2 + 2*a*tan(x/2)^4 - 2*a*tan(x/2)
^6 - 3*a*tan(x/2)^8 - a*tan(x/2)^10 + 8*b*tan(x/2)^3 + 12*b*tan(x/2)^5 + 8*b*tan(x/2)^7 + 2*b*tan(x/2)^9) + (l
og(a + 2*b*tan(x/2) - a*tan(x/2)^2)*(3*a^2*b^4 - 3*a^4*b^2))/(a^8 + b^8 + 4*a^2*b^6 + 6*a^4*b^4 + 4*a^6*b^2) -
 (log(1/(cos(x) + 1))*(96*a^2*b^4 - 96*a^4*b^2))/(2*(16*a^8 + 16*b^8 + 64*a^2*b^6 + 96*a^4*b^4 + 64*a^6*b^2))
+ (3*a*b*atan((tan(x/2)*((((6*(45*a^7*b^10 - 18*a^5*b^12 - 135*a^9*b^8 + 99*a^11*b^6 + 9*a^13*b^4))/(a^18 + b^
18 + 9*a^2*b^16 + 36*a^4*b^14 + 84*a^6*b^12 + 126*a^8*b^10 + 126*a^10*b^8 + 84*a^12*b^6 + 36*a^14*b^4 + 9*a^16
*b^2) - (((6*(6*a^3*b^16 - 153*a^5*b^14 - 180*a^7*b^12 + 357*a^9*b^10 + 534*a^11*b^8 + 81*a^13*b^6 - 72*a^15*b
^4 + 3*a^17*b^2))/(a^18 + b^18 + 9*a^2*b^16 + 36*a^4*b^14 + 84*a^6*b^12 + 126*a^8*b^10 + 126*a^10*b^8 + 84*a^1
2*b^6 + 36*a^14*b^4 + 9*a^16*b^2) - ((96*a^2*b^4 - 96*a^4*b^2)*((6*(8*a^3*b^18 + 112*a^5*b^16 + 464*a^7*b^14 +
 880*a^9*b^12 + 800*a^11*b^10 + 208*a^13*b^8 - 208*a^15*b^6 - 176*a^17*b^4 - 40*a^19*b^2))/(a^18 + b^18 + 9*a^
2*b^16 + 36*a^4*b^14 + 84*a^6*b^12 + 126*a^8*b^10 + 126*a^10*b^8 + 84*a^12*b^6 + 36*a^14*b^4 + 9*a^16*b^2) - (
3*(96*a^2*b^4 - 96*a^4*b^2)*(16*a*b^22 + 160*a^3*b^20 + 720*a^5*b^18 + 1920*a^7*b^16 + 3360*a^9*b^14 + 4032*a^
11*b^12 + 3360*a^13*b^10 + 1920*a^15*b^8 + 720*a^17*b^6 + 160*a^19*b^4 + 16*a^21*b^2))/((16*a^8 + 16*b^8 + 64*
a^2*b^6 + 96*a^4*b^4 + 64*a^6*b^2)*(a^18 + b^18 + 9*a^2*b^16 + 36*a^4*b^14 + 84*a^6*b^12 + 126*a^8*b^10 + 126*
a^10*b^8 + 84*a^12*b^6 + 36*a^14*b^4 + 9*a^16*b^2))))/(2*(16*a^8 + 16*b^8 + 64*a^2*b^6 + 96*a^4*b^4 + 64*a^6*b
^2)))*(96*a^2*b^4 - 96*a^4*b^2))/(2*(16*a^8 + 16*b^8 + 64*a^2*b^6 + 96*a^4*b^4 + 64*a^6*b^2)) - (3*a*b*((3*a*b
*((6*(8*a^3*b^18 + 112*a^5*b^16 + 464*a^7*b^14 + 880*a^9*b^12 + 800*a^11*b^10 + 208*a^13*b^8 - 208*a^15*b^6 -
176*a^17*b^4 - 40*a^19*b^2))/(a^18 + b^18 + 9*a^2*b^16 + 36*a^4*b^14 + 84*a^6*b^12 + 126*a^8*b^10 + 126*a^10*b
^8 + 84*a^12*b^6 + 36*a^14*b^4 + 9*a^16*b^2) - (3*(96*a^2*b^4 - 96*a^4*b^2)*(16*a*b^22 + 160*a^3*b^20 + 720*a^
5*b^18 + 1920*a^7*b^16 + 3360*a^9*b^14 + 4032*a^11*b^12 + 3360*a^13*b^10 + 1920*a^15*b^8 + 720*a^17*b^6 + 160*
a^19*b^4 + 16*a^21*b^2))/((16*a^8 + 16*b^8 + 64*a^2*b^6 + 96*a^4*b^4 + 64*a^6*b^2)*(a^18 + b^18 + 9*a^2*b^16 +
 36*a^4*b^14 + 84*a^6*b^12 + 126*a^8*b^10 + 126*a^10*b^8 + 84*a^12*b^6 + 36*a^14*b^4 + 9*a^16*b^2)))*(2*a*b -
a^2 + b^2)*(2*a*b + a^2 - b^2))/(4*(a^8 + b^8 + 4*a^2*b^6 + 6*a^4*b^4 + 4*a^6*b^2)) - (9*a*b*(96*a^2*b^4 - 96*
a^4*b^2)*(2*a*b - a^2 + b^2)*(2*a*b + a^2 - b^2)*(16*a*b^22 + 160*a^3*b^20 + 720*a^5*b^18 + 1920*a^7*b^16 + 33
60*a^9*b^14 + 4032*a^11*b^12 + 3360*a^13*b^10 + 1920*a^15*b^8 + 720*a^17*b^6 + 160*a^19*b^4 + 16*a^21*b^2))/(4
*(16*a^8 + 16*b^8 + 64*a^2*b^6 + 96*a^4*b^4 + 64*a^6*b^2)*(a^8 + b^8 + 4*a^2*b^6 + 6*a^4*b^4 + 4*a^6*b^2)*(a^1
8 + b^18 + 9*a^2*b^16 + 36*a^4*b^14 + 84*a^6*b^12 + 126*a^8*b^10 + 126*a^10*b^8 + 84*a^12*b^6 + 36*a^14*b^4 +
9*a^16*b^2)))*(2*a*b - a^2 + b^2)*(2*a*b + a^2 - b^2))/(4*(a^8 + b^8 + 4*a^2*b^6 + 6*a^4*b^4 + 4*a^6*b^2)) + (
27*a^2*b^2*(96*a^2*b^4 - 96*a^4*b^2)*(2*a*b - a^2 + b^2)^2*(2*a*b + a^2 - b^2)^2*(16*a*b^22 + 160*a^3*b^20 + 7
20*a^5*b^18 + 1920*a^7*b^16 + 3360*a^9*b^14 + 4032*a^11*b^12 + 3360*a^13*b^10 + 1920*a^15*b^8 + 720*a^17*b^6 +
 160*a^19*b^4 + 16*a^21*b^2))/(16*(16*a^8 + 16*b^8 + 64*a^2*b^6 + 96*a^4*b^4 + 64*a^6*b^2)*(a^8 + b^8 + 4*a^2*
b^6 + 6*a^4*b^4 + 4*a^6*b^2)^2*(a^18 + b^18 + 9*a^2*b^16 + 36*a^4*b^14 + 84*a^6*b^12 + 126*a^8*b^10 + 126*a^10
*b^8 + 84*a^12*b^6 + 36*a^14*b^4 + 9*a^16*b^2)))*(18*a*b^9 + 18*a^9*b - 280*a^3*b^7 + 556*a^5*b^5 - 280*a^7*b^
3))/(a^10 + b^10 + 53*a^2*b^8 - 38*a^4*b^6 - 38*a^6*b^4 + 53*a^8*b^2)^2 + ((((96*a^2*b^4 - 96*a^4*b^2)*((3*a*b
*((6*(8*a^3*b^18 + 112*a^5*b^16 + 464*a^7*b^14 + 880*a^9*b^12 + 800*a^11*b^10 + 208*a^13*b^8 - 208*a^15*b^6 -
176*a^17*b^4 - 40*a^19*b^2))/(a^18 + b^18 + 9*a^2*b^16 + 36*a^4*b^14 + 84*a^6*b^12 + 126*a^8*b^10 + 126*a^10*b
^8 + 84*a^12*b^6 + 36*a^14*b^4 + 9*a^16*b^2) - (3*(96*a^2*b^4 - 96*a^4*b^2)*(16*a*b^22 + 160*a^3*b^20 + 720*a^
5*b^18 + 1920*a^7*b^16 + 3360*a^9*b^14 + 4032*a^11*b^12 + 3360*a^13*b^10 + 1920*a^15*b^8 + 720*a^17*b^6 + 160*
a^19*b^4 + 16*a^21*b^2))/((16*a^8 + 16*b^8 + 64*a^2*b^6 + 96*a^4*b^4 + 64*a^6*b^2)*(a^18 + b^18 + 9*a^2*b^16 +
 36*a^4*b^14 + 84*a^6*b^12 + 126*a^8*b^10 + 126*a^10*b^8 + 84*a^12*b^6 + 36*a^14*b^4 + 9*a^16*b^2)))*(2*a*b -
a^2 + b^2)*(2*a*b + a^2 - b^2))/(4*(a^8 + b^8 +...

________________________________________________________________________________________